Growth differentiation factor 15 (GDF15)-mediated HER2 phosphorylation reduces trastuzumab sensitivity of HER2-overexpressing breast cancer cells.
نویسندگان
چکیده
Resistance to the anti-HER2 monoclonal antibody trastuzumab is a major problem in the treatment of HER2-overexpressing metastatic breast cancer. Growth differentiation factor 15 (GDF15), which is structurally similar to TGF beta, has been reported to stimulate phosphorylation of HER2. We tested the hypothesis that GDF15-mediated phosphorylation of HER2 reduces the sensitivity of HER2-overexpressing breast cancer cell lines to trastuzumab. Gene microarray analysis, real-time PCR, and ELISA were used to assess GDF15 expression. Growth inhibition and proliferation assays in response to pharmacologic inhibitors of HER2, TGF beta receptor, or Src were performed on cells stimulated with recombinant human GDF15 or stable GDF15 transfectants. Western blotting was performed to determine effects of GDF15 on HER2 signaling. Cells were infected with lentiviral GDF15 shRNA plasmid to determine effects of GDF15 knockdown on cell survival in response to trastuzumab. Cells with acquired or primary trastuzumab resistance showed increased GDF15 expression. Exposure of trastuzumab-sensitive cells to recombinant human GDF15 or stable transfection of a GDF15 expression plasmid inhibited trastuzumab-mediated growth inhibition. HER2 tyrosine kinase inhibition abrogated GDF15-mediated Akt and Erk1/2 phosphorylation and blocked GDF15-mediated trastuzumab resistance. Pharmacologic inhibition of TGF beta receptor blocked GDF15-mediated phosphorylation of Src. Further, TGF beta receptor inhibition or Src inhibition blocked GDF15-mediated trastuzumab resistance. Finally, lentiviral GDF15 shRNA increased trastuzumab sensitivity in cells with acquired or primary trastuzumab resistance. These results support GDF15-mediated activation of TGF beta receptor-Src-HER2 signaling crosstalk as a novel mechanism of trastuzumab resistance.
منابع مشابه
Growth differentiation factor 15 mediates epithelial mesenchymal transition and invasion of breast cancers through IGF-1R-FoxM1 signaling
Expression of the inflammatory cytokine growth differentiation factor 15 (GDF15) is significantly elevated in many tumor types in association with epithelial mesenchymal transition (EMT), drug resistance, and progressive disease. However, few studies have examined GDF15 expression, signaling, or function in breast cancer. In the current study, we demonstrate that GDF15 is associated with high t...
متن کاملAutocrine motility factor promotes HER2 cleavage and signaling in breast cancer cells.
Trastuzumab (Herceptin) is an effective targeted therapy in HER2-overexpressing human breast carcinoma. However, many HER2-positive patients initially or eventually become resistant to this treatment, so elucidating mechanisms of trastuzumab resistance that emerge in breast carcinoma cells is clinically important. Here, we show that autocrine motility factor (AMF) binds to HER2 and induces clea...
متن کاملGeneration of CHO Stable Cell Line Overexpressing HER2: an In Vitro Model for Breast Cancer
Background: Breast cancer is the most common female malignancy and the leading cause of cancer mortality in women worldwide. The human epidermal growth factor receptor2 (HER2) is a transmembrane tyrosine kinase receptor that is usually overexpressed in human breast cancers. Stable cell lines heterogeneously overexpressing HER2 are highly required as in vitro models for breast cancer research. T...
متن کاملOvercoming trastuzumab resistance in HER2-overexpressing breast cancer cells by using a novel celecoxib-derived phosphoinositide-dependent kinase-1 inhibitor.
Although trastuzumab has been successfully used in patients with HER2-overexpressing metastatic breast cancer, resistance is a common problem that ultimately culminates in treatment failure. In light of the importance of Akt signaling in trastuzumab's antitumor action, we hypothesized that concurrent inhibition of Akt could enhance trastuzumab sensitivity and moreover reverse the resistant phen...
متن کاملTrastuzumab has preferential activity against breast cancers driven by HER2 homodimers.
In breast cancer cells with HER2 gene amplification, HER2 receptors exist on the cell surface as monomers, homodimers, and heterodimers with EGFR/HER3. The therapeutic antibody trastuzumab, an approved therapy for HER2(+) breast cancer, cannot block ligand-induced HER2 heterodimers, suggesting it cannot effectively inhibit HER2 signaling. Hence, HER2 oligomeric states may predict the odds of a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical pharmacology
دوره 82 9 شماره
صفحات -
تاریخ انتشار 2011